The EB76 machine programs and thinks in Straight dimensions between bends. To determine these dimensions you can use two methods.

The first is to determine the arc length of each respective bend and then deduct $1 / 2$ that value for each respective side of the bend. The formula is shown below.

Remember that 90 degree bends are the exception. Simply deduct the CLR of the tooling from each side.

The second alternative is to use the CLR of the tooling multiplied by the tangent of $1 / 2$ the desired angle. A table of tangents is included.

Table of tan(angle)

Use your browser "Print" command to make copies of this form.
Navigation ..

Beginner's Guide Home Page

Example of 32 degree bend: 3.0(clr of bending die) x 2867 (tangent value of 16 degrees, $1 / 2$ of 32) $=0.8601$ for the deduction to tangent.

The Springback program/function is designed to compensate for material elasticity and tensile.

Two angles are bent (a 20 degree and a 120 degree bend) the actual measured values are input into the respective fields.

In addition, the observed travel of the Y1 axis is put in the field named "Y motion". It is important to watch this axis during the test bend.

A test program is created with a 20 degree bend and a 120 degree bend. In Auto CYCLE it is possible to look at the position of all axes during the sequence.

Before the 120 bend starts, look at the Y1 actual position and write it down. It is possible to stop midcycle in Automatic by lifting your finger off the center actuator button. The cycle will resume when depressed again.

Once the 120 bend is complete, lift your finger again and not the Y 1 actual position. The difference in the Y 1 position values is the value input on the springback file.

Input the observed value on the front page of the spring back file. Y1 Motion During Deep Angle

Press SAVE and then CALCULATE COEFFICIENT

The screen will automatically roll to the second page

Press SAVE again

Please note the value populated in the TUBE RADIUS

In this example it is 3.03 The tooling has a stated radius of 3.0 This value is the calculated radius based upon the actual observed values input.

Theoretical 120 degree bend $120 \times 3 \times .0175=6.3$

This is the theoretical arc length. The actual observed Y 1 travel or arc length was 5.91

The program will use the radius of 3.03 for all corrections once applied.

With the springback file complete, it is now available for use on the polar files.

Double click the yellow springback field. Click Springback files, select correct file and double click to attach to polar/program file.

Press SAVE when finished.

Press the CORR button on the bottom of the page. This will take you to the CORRECTIONS page

Press SPRING BACK CALCULATION and CALCULATE ALL CORR. Press SAVE

Two corrections are automatically applied:

DBB/SB This is a Distance Between Bends correction. The values in this field are always a small negative number. In the picture above, Line 1 has a DBB/SB of -0.0859

How it works: On the LRA program page the first straight length is 6 inches (see below)
The machine will actually position for the first line at 6 minus $0.0859=5.9141$

And the same calculation is performed for all successive lines.

IT IS IMPORTANT TO LOOK AT THE VALUES IN THE DBB/SB COLUMN AND ENSURE THEY ARE SMALL NEGATIVE VALUES!!!!

The second correction is for Degree of Bend DOB/SB
Based upon the actual measured values of the test angles (20 and 120), the program compensates for the bend angle.

IF DISTANCES BETWEEN BENDS ARE NOT CORRECT:

1. CHECK VALUES INPUT ON LRA PAGE FOR ACCURACY
2. CHECK VALUES ON DBB/SB COLUMN ON CORRECTIONS PAGE
3. REPEAT SPRINGBACK TEST PROCEDURE AND BE AWARE OF Y1 MOTION DURING DEEP ANGLE AND ACCURATELY MEASURE ANGLES PRODUCED.
